A 3D Point Cloud Feature Identification Method Based on Improved Point Feature Histogram Descriptor

نویسندگان

چکیده

A significant amount of research has been conducted on the segmentation large-scale 3D point clouds. However, efficient cloud feature identification from results is an essential capability for computer vision and surveying tasks. Feature description methods are algorithms that convert set into vectors or matrices can be used identification. While histogram (PFH) descriptor method, it does not work well with objects have smooth surfaces, such as planar, spherical, cylindrical objects. This paper proposes a method based improved PFH feature-level normal efficiently distinguish surfaces. Firstly, established, then relationship between each point’s calculated. Finally, unknown identified by comparing similarity type-labeled feature. The proposed obtains overall accuracy ranging 71.9% to 81.9% street lamps, trees, buildings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interest Point Detector and Feature Descriptor Survey

Many algorithms for computer vision rely on locating interest points, or keypoints in each image, and calculating a feature description from the pixel region surrounding the interest point. This is in contrast to methods such as correlation, where a larger rectangular pattern is stepped over the image at pixel intervals and the correlation is measured at each location. The interest point is the...

متن کامل

On the Effectiveness of Feature-based Lidar Point Cloud Registration

LIDAR systems have been regarded as novel technologies for efficiently acquiring 3-D geo-spatial information, resulting in broad applications in engineering and management fields. Registration of LIDAR point clouds of consecutive scans or different platforms is a prerequisite for fully exploiting advantages of afore-mentioned applications. In this study, the authors integrate point, line and pl...

متن کامل

Statistical Feature Point Matching Method

This paper presents a statistical method to match feature points from stereo pairs of images. The proposed method is evaluated in terms of effectiveness, robustness and computational speed. The evaluation was performed on several pairs of real stereo images of natural scenes taken onboard an unmanned aerial vehicle. The results show that the proposed method reduces the number of incorrect match...

متن کامل

Feature enhancing aerial lidar point cloud refinement

Raw aerial LiDAR point clouds often suffer from noise and under-sampling, which can be alleviated by feature preserving refinement. However, existing approaches are limited to only preserving normal discontinuous features (ridges, ravines and crest lines) while position discontinuous features (boundaries) are also universal in urban scenes. We present a new refinement approach to accommodate un...

متن کامل

Persistent Point Feature Histograms for 3D Point Clouds

This paper proposes a novel way of characterizing the local geometry of 3D points, using persistent feature histograms. The relationships between the neighbors of a point are analyzed and the resulted values are stored in a 16-bin histogram. The histograms are pose and point cloud density invariant and cope well with noisy datasets. We show that geometric primitives have unique signatures in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12173736